quinta-feira, 20 de setembro de 2012

Fibra Óptica e Cabo Coaxial


Fibra Óptica


 A fibra óptica é um pedaço de vidro ou de materiais poliméricos com capacidade de transmitir luz. Tal filamento pode apresentar diâmetros variáveis, dependendo da aplicação, indo desde diâmetros ínfimos, da ordem de micrômetros (mais finos que um fio de cabelo) até vários milímetros.

Tipos de Fibras

 As fibras ópticas podem ser basicamente de dois modos:
  • Monomodo:
    • Permite o uso de apenas um sinal de luz pela fibra.
    • Dimensões menores que os outros tipos de fibras.
    • Maior banda passante por ter menor dispersão.
    • Geralmente é usado laser como fonte de geração de sinal.
  • Multimodo:
    • Permite o uso de fontes luminosas de baixa ocorrência tais como LEDs (mais baratas).
    • Diâmetros grandes facilitam o acoplamento de fontes luminosas e requerem pouca precisão nos conectores.
    • Muito usado para curtas distâncias pelo preço e facilidade de implementação pois a longa distância tem muita perda.
O meio de transmissão por fibra ótica é chamado de "guiado", porque as ondas eletromagnéticas são "guiadas" na fibra, embora o meio transmita ondas omnidirecionais, contrariamente à transmissão "sem-fio", cujo meio é chamado de "não-guiado". Mesmo confinada a um meio físico, a luz transmitida pela fibra ótica proporciona o alcance de taxas de transmissão (velocidades) elevadíssimas, da ordem de dez elevado à nona potência a dez elevado à décima potência, de bits por segundo (cerca de 40Gbps), com baixa taxa de atenuação por quilômetro. Mas a velocidade de transmissão total possível ainda não foi alcançada pelas tecnologias existentes. Como a luz se propaga no interior de um meio físico, sofrendo ainda o fenômeno de reflexão, ela não consegue alcançar a velocidade de propagação no vácuo, que é de 300.000 km/segundo, sendo esta velocidade diminuída consideravelmente. 



Conectores da Fibra Óptica

 
A interligação de fibras ópticas é bastante mais complicada do que para cabos de cobre. Para garantir a passagem do sinal óptico de uma fibra para a outra estas têm de ser encostadas topo a topo, mas é necessário realizar um polimento prévio dos topos das fibras.
Tudo se torna complicado devido à espessura muito reduzida da fibra. Para se conseguir o resultado pretendido a fibra já sem protecção é inserida num cilindro com um furo muito fino e depois é colada, usando uma cola ou a quente.
Posteriormente o topo do cilindro (juntamente com a fibra) é polido.

  Dois cilindros destes perfeitamente encostados são então capazes de assegurar uma transmissão do sinal óptico entre as duas fibras. Todas as terminações de cabos de fibra óptica são realizadas deste modo, logo não existem terminações em ficha fêmea, todas as terminações são em ficha macho. A interligação de fibras recorre a um encaixe fêmea duplo que garante o encosto perfeito entre os cilindros das fichas macho.


Cabo Coaxial


O cabo coaxial é um tipo de cabo condutor usado para transmitir sinais. Este tipo de cabo é constituído por diversas camadas concêntricas de condutores e isolantes, daí o nome coaxial.
O cabo coaxial é constituído por um fio de cobre condutor revestido por um material isolante e rodeado duma blindagem. Este meio permite transmissões até frequências muito elevadas e isto para longas distâncias.

  • A velocidade máxima de transmissão é de 20 Mb/s.
  • Foi utilizado até meados dos anos 90.
  • Ainda é usado em telecomunicações 

Usos

 A principal razão da sua utilização deve-se ao facto de poder reduzir os efeitos e sinais externos sobre os sinais a transmitir, por fenômenos de IEM ( Interferência Electromagnética).
Os cabos coaxiais geralmente são usados em múltiplas aplicações desde áudio ate as linhas de transmissão de frequências da ordem dos gigahertz . A velocidade de transmissão é bastante elevada devido a tolerância aos ruídos graças à malha de proteção desses cabos.
Os cabos coaxiais são utilizados nas topologias físicas em barramento.
Os cabos coaxiais são usados em diferentes aplicações:
  • Ligações de áudio
  • Ligações de rede de computadores
  • Ligações de sinais de radiofrequência para rádio e TV - (Transmissores/receptores)
  • Ligações de radioamador


Cabo de Par Trançado

O que são?


Os cabos de par trançado (ou par de fios) são um tipo de cabo ethernet que faz transferência de dados, vêm substituindo os cabos coaxiais desde o início da década de 90. Hoje em dia é muito raro alguém ainda utilizar cabos coaxiais em novas instalações de rede, o mais comum é apenas reparar ou expandir redes que já existem.

O nome "par trançado" é muito conveniente, pois estes cabos são constituídos justamente por 4 pares de cabos entrelaçados. Os cabos de par trançado usam um tipo de proteção sutil: o entrelaçamento dos cabos cria um campo eletromagnético que oferece uma razoável proteção contra interferências externas.

A taxa de giro (normalmente definida em termos de giros por metro) é parte da especificação de certo tipo de cabo. Quanto maior o número de giros, mais ruído é cancelado. Foi um sistema originalmente produzido para transmissão telefônica analógica que utilizou o sistema de transmissão por par de fios. Aproveita-se esta tecnologia que já é tradicional por causa do seu tempo de uso e do grande número de linhas instaladas.

As principais vantagens de uso do cabo par trançado são: uma maior taxa de transferência de arquivos, baixo custo do cabo e baixo custo de manutenção de rede.

Taxas de Transmissão

As taxas usadas nas redes com o cabo par trançado são:
  • 10 Mbps (Ethernet)
  • 100 Mbps (Fast Ethernet)
  • 1000 Mbps (Gigabit Ethernet)
  • 10000 Mbps ou 10Gbps (10Gigabit Ethernet)
A qualidade da linha de transmissão que utiliza o par de fios depende, basicamente, da qualidade dos condutores empregados, técnicas usadas para a transmissão dos dados através da linha e proteção dos componentes da linha para evitar a indução nos condutores.

Tipos

Existem três tipos de cabos Par trançado:

UTP (Unshielded Twisted Pair) ou Par Trançado sem Blindagem: é o mais usado atualmente tanto em redes domésticas quanto em grandes redes industriais devido ao fácil manuseio, instalação, permitindo taxas de transmissão de até 100 Mbps, é o mais barato para distâncias de até 100 metros . Sua estrutura é de quatro pares de fios entrelaçados e revestidos por uma capa de PVC. Pela falta de blindagem este tipo de cabo não é recomendado ser instalado próximo a equipamentos que possam gerar campos magnéticos (fios de rede elétrica, motores, inversores de frequência) e também não podem ficar em ambientes com umidade.

STP (Shield Twisted Pair) ou Par Trançado Blindado: É semelhante ao UTP. A diferença é que possui uma blindagem feita com a malha metálica em cada par. É recomendado para ambientes com interferência eletromagnética acentuada. Por causa de sua blindagem especial em cada par acaba possuindo um custo mais elevado.

ScTP ou FTP (Foil Twisted Pair): os cabos são cobertos pelo mesmo composto do UTP, para este tipo de cabo, no entanto, uma película de metal é enrolada sobre o conjunto de pares trançados, melhorando a resposta ao EMI, embora exija maiores cuidados quanto ao aterramento para garantir eficácia frente às interferências.

Padrões de Cabeamento

As cores dos fios são:
  • Laranja e branco
  • Laranja
  • Verde e branco
  • Azul
  • Azul e branco
  • Verde
  • Castanho (ou marrom) e branco
  • Castanho (ou marrom)

É importante que a sequência de cores seja respeitada ao se montar um cabo. Caso contrário, pode haver perda parcial ou total de pacotes, principalmente em cabos de mais de 3 metros.

As normas de montagem do cabo de prevê duas montagens para os cabos, denominadas T568A e T568B. A montagem T568A usa a sequência branco e verde, verde, branco e laranja, azul, branco e azul, laranja, branco e castanho, castanho.
Pino Par Fio Cor
1 3 1 Par 3 Fio 1 branco/verde
2 3 2 Par 3 Fio 2 verde
3 2 1 Par 2 Fio 1 branco/laranja
4 1 2 Par 1 Fio 2 azul
5 1 1 Par 1 Fio 1 branco/azul
6 2 2 Par 2 Fio 2 laranja
7 4 1 Par 4 Fio 1 branco/marrom
8 4 2 Par 4 Fio 2 marrom
A montagem T568B usa a sequência branco e laranja, laranja, branco e verde, azul, branco e azul, verde, branco e castanho, castanho.
Pino Par Fio Cor
1 2 1 Par 2 Fio 1 branco/laranja
2 2 2 Par 2 Fio 2 laranja
3 3 1 Par 3 Fio 1 branco/verde
4 1 2 Par 1 Fio 2 azul
5 1 1 Par 1 Fio 1 branco/azul
6 3 2 Par 3 Fio 2 verde
7 4 1 Par 4 Fio 1 branco/marrom
8 4 2 Par 4 Fio 2 marrom

 Categorias de Cabo

Os cabos UTP foram padronizados pelas normas da EIA/TIA-568-B e são divididos em várias categorias, levando em conta o nível de segurança e a bitola do fio, onde os números maiores indicam fios com diâmetros menores, veja abaixo um resumo simplificado dos cabos UTP.

Categoria dos cabos (CAT1) até (CAT4): Os mais fracos, não aguentam uma frequência muito alta (CAT4=20Mbps)

Categoria dos cabos (CAT5) e (CAT6): capazes de aguentar altas frequências(CAT5=100MHz; CAT6=250MHz)

Crossover

Um cabo crossover, é um cabo de rede par trançado que permite a ligação de 2 (dois) computadores pelas respectivas placas de rede sem a necessidade de um concentrador (Hub ou Switch) ou a ligação de modems.

 A ligação é feita com um cabo de par trançado onde tem-se: em uma ponta o padrão T568A, e, em outra, o padrão T568B

quinta-feira, 13 de setembro de 2012

Topologia de redes tipo malha


Topologia malha


Esta topologia é muito utilizada em várias configurações, pois facilita a instalação e configuração de dispositivos em redes mais simples. Todos os nós estão atados a todos os outros nós, como se estivessem entrelaçados. Já que são vários os caminhos possíveis por onde a informação pode fluir da origem até o destino. Neste tipo de rede, o tempo de espera é reduzido e eventuais problemas não interrompem o funcionamento da rede. Um problema encontrado é em relação às interfaces de rede, já que para cada segmento de rede seria necessário instalar, em uma mesma estação, um número equivalente de placas de rede. Uma vez que cada estação envia sinais para todas as outras com frequência, a largura da banda de rede não é bem aproveitada.

Topologia de redes tipo árvore

 

Topologia árvore



A topologia em árvore é essencialmente uma série de barras interconectadas. Geralmente existe uma barra central onde outros ramos menores se conectam. Esta ligação é realizada através de derivadores e as conexões das estações realizadas do mesmo modo que no sistema de barra padrão.
Cuidados adicionais devem ser tomados nas redes em árvores, pois cada ramificação significa que o sinal deverá se propagar por dois caminhos diferentes. A menos que estes caminhos estejam perfeitamente casados, os sinais terão velocidades de propagação diferentes e refletirão os sinais de diferentes maneiras. Em geral, redes em árvore, vão trabalhar com taxa de transmissão menores do que as redes em barra comum, por estes motivos.
Topologia física baseada numa estrutura hierárquica de várias redes e sub-redes. Existem um ou mais concentradores que ligam cada rede local e existe um outro concentrador que interliga todos os outros concentradores. Esta topologia facilita a manutenção do sistema e permite, em caso de avaria, detectar com mais facilidade o problema.

Topologia de redes tipo estrela

Topologia estrela


A mais comum atualmente, a topologia em estrela utiliza cabos de par trançado e um concentrador como ponto central da rede. O concentrador se encarrega de retransmitir todos os dados para todas as estações, mas com a vantagem de tornar mais fácil a localização dos problemas, já que se um dos cabos, uma das portas do concentrador ou uma das placas de rede estiver com problemas, apenas o nó ligado ao componente defeituoso ficará fora da rede. Esta topologia se aplica apenas a pequenas redes, já que os concentradores costumam ter apenas oito ou dezesseis portas. Em redes maiores é utilizada a topologia de árvore, onde temos vários concentradores interligados entre si por comutadores ou roteadores.

Topologia de redes tipo Ponto-a-ponto

Topologia ponto-a-ponto


A topologia ponto a ponto é a mais simples. Une dois computadores, através de um meio de transmissão qualquer. Dela pode-se formar novas topologias, incluindo novos nós em sua estrutura.

Topologia de redes tipo barramento

Topologia barramento


Todos os computadores são ligados em um mesmo barramento físico de dados. Apesar de os dados não passarem por dentro de cada um dos nós, apenas uma máquina pode “escrever” no barramento num dado momento. Todas as outras “escutam” e recolhem para si os dados destinados a elas. Quando um computador estiver a transmitir um sinal, toda a rede fica ocupada e se outro computador tentar enviar outro sinal ao mesmo tempo, ocorre uma colisão e é preciso reiniciar a transmissão.
Na topologia de barramento todos os computadores estão ligados a um cabo contínuo que é terminado em ambas as extremidades por uma pequena ficha com uma resistência ligada entre a malha e o fio central do cabo (terminadores). A função dos “terminadores” é de adaptarem a linha, isto é, fazerem com que a impedância vista para interior e para o exterior do cabo seja a mesma, senão constata-se que há reflexão do sinal e, consequentemente, perda da comunicação. Neste tipo de topologia a comunicação é feita por broadcast , isto é, os dados são enviados para o barramento e todos os computadores vêem esses dados, no entanto, eles só serão recebidos pelo destinatário.

Topologia redes tipo anel

Topologia de anel

 Na topologia em anel os dispositivos são conectados em série, formando um circuito fechado (anel). Os dados são transmitidos unidirecionalmente de nó em nó até atingir o seu destino. Uma mensagem enviada por uma estação passa por outras estações, através das retransmissões, até ser retirada pela estação destino ou pela estação fonte. Os sinais sofrem menos distorção e atenuação no enlace entre as estações, pois há um repetidor em cada estação. Há um atraso de um ou mais bits em cada estação para processamento de dados. Há uma queda na confiabilidade para um grande número de estações. A cada estação inserida, há um aumento de retardo na rede. É possível usar anéis múltiplos para aumentar a confiabilidade e o desempenho.

Componentes de uma rede

Componentes de uma rede 

Uma rede de computadores torna-se operacional quando existe a interligação dos computadores de forma local ou remota. Para fazê-la, são necessários placas de rede, cabos, conectores, concentradores, ou comutadores, o sistema operacional é o cilente de acesso

 

Servidores


Servidores são computadores com alta capacidade de processamento e armazenagem que tem por função disponibilizar serviços, arquivos ou aplicações a uma rede. Como provedores de serviços, eles podem disponibilizar e-mail, hospedagem de páginas na internet, firewall, proxy, impressão, banco de dados, servir como controladores de domínio e muitas outras utilidades. Como servidores de arquivos, eles podem servir de depósito para que os utilizadores guardem os seus arquivos num local seguro e centralizado. E, finalmente, como servidores de aplicação, disponibilizar aplicações que necessitam de alto poder de processamento a máquinas com menor capacidade.

Repetidor


é um equipamento utilizado para interligação de redes idênticas, pois eles amplificam e regeneram eletricamente os sinais transmitidos no meio físico.
Ele recebe todos os pacotes de cada uma das redes que interliga e os repete nas demais redes sem realizar qualquer tipo de tratamento sobre os mesmos. Não se pode usar muitos destes dispositivos em uma rede local, pois degeneram o sinal no domínio digital e causam problemas de sincronismo entre as interfaces de rede.
Repetidores são utilizados para estender a transmissão de ondas de rádio, por exemplo, redes wireless, wimax e telefonia celular.

Hub


Hub (do Inglês, "transmitir") ou concentrador é o processo pelo qual se transmite ou difunde determinada informação, tendo como principal característica que a mesma informação está sendo enviada para muitos receptores ao mesmo tempo. Este termo é utilizado em rádio, telecomunicações e em informática.
Uma de suas aplicações é no controle de tráfego de dados de várias redes, quando uma máquina (computador) ligada à rede envia informações para o hub, e se o mesmo estiver ocupado transmitindo outras informações, o pacote de dados é retornado a máquina requisitante com um pedido de espera, até que ele termine a operação. Esta mesma informação é enviada a todas as máquinas interligadas a este hub e aceita somente por um computador pré-endereçado, os demais ecos retornam ao hub, e à máquina geradora do pedido (caracterizando redundância).

 

Comutador


Um comutador ou switch é um dispositivo utilizado em redes de computadores para reencaminhar módulos (frames) entre os diversos nós. Possuem portas, assim como os concentradores (hubs) e a principal diferença entre um comutador e um concentrador, é que o comutador segmenta a rede internamente, sendo que a cada porta corresponde um domínio de colisão diferente, o que significa que não haverá colisões entre os pacotes de segmentos diferentes — ao contrário dos concentradores, cujas portas partilham o mesmo domínio de colisão. Outra importante diferença está relacionada à gestão da rede, com um switch gerenciável, podemos criar VLANS, deste modo a rede gerida será divida em menores segmentos. Explicando de uma maneira mais fácil, o switch identifica cada porta e envia os pacotes somente para a porta destino, evitando assim que outros nós recebam os pacotes.


Placa de rede


Uma placa de rede (também chamada adaptador de rede ou NIC, do acrônimo inglês Network Interface Card) é um dispositivo de hardware responsável pela comunicação entre os computadores de uma rede.
A placa de rede é o hardware que permite aos computadores conversarem entre si através da rede. A sua função é controlar todo o envio e recepção de dados através da rede. Cada arquitetura de rede exige um tipo específico de placa de rede; sendo as arquiteturas mais comuns a rede em anel Token Ring e a tipo Ethernet.
 

Modem


A palavra Modem vem da junção das palavras modulador e demodulador. É um dispositivo eletrônico que modula um sinal digital numa onda analógica, pronta a ser transmitida pela linha telefónica, e que demodula o sinal analógico e reconverte-o para o formato digital original. Utilizado para conexão à Internet, BBS, ou a outro computador.
O processo de conversão de sinais binários para analógicos é chamado de modulação/conversão digital-analógico. Quando o sinal é recebido, um outro modem reverte o processo (chamado demodulação). Ambos os modems devem estar a trabalhar de acordo com os mesmos padrões, que especificam, entre outras coisas, a velocidade de transmissão (bps, baud, nível e algoritmo de compressão de dados, protocolo, etc).

Classificação do nível de abrangência das redes de computadores

Nível de abrangência: LAN, MAN, WMAN, WAN, WWAN


Rede de área pessoal, tradução de Personal Area Network (ou PAN), é uma tecnologia de rede formada por nós (dispositivos conectados à rede) muito próximos uns dos outros (geralmente não mais de uma dezena de metros). Por exemplo, um computador portátil conectando-se a um outro e este a uma impressora.
São exemplos de PAN as redes do tipo Bluetooth e UWB

LAN:
Em computação, rede de área local (ou LAN, acrônimo de local area network) é uma rede de computador utilizada na interconexão de computador equipamentos processadores com a finalidade de troca de dados. Um conceito mais definido seria: é um conjunto de hardware e software que permite a computadores individuais estabelecerem comunicação entre si, trocando e compartilhando informações e recursos. Tais redes são denominadas locais por cobrirem apenas uma área limitada (10 Km no máximo, quando passam a ser denominadas MANs), visto que, fisicamente, quanto maior a distância de um nó da rede ao outro, maior a taxa de erros que ocorrerão devido à degradação do sinal.

MAN:
 Os MAN (Metropolitan Area Network, redes metropolitanas) interligam vários LAN geograficamente próximos (no máximo, a algumas dezenas de quilómetros) com débitos importantes. Assim, um MAN permite a dois nós distantes comunicar como se fizessem parte de uma mesma rede local.
Um MAN é formado por comutadores ou switchs interligados por relações de elevado débito (em geral, em fibra óptica, e os desevolvimentos mais recentes para acesso a internet de alta velocidade sem fio, resultaram em outra MAN).
WAN:
A Wide Area Network (WAN), Rede de área alargada ou Rede de longa distância, também conhecida como Rede geograficamente distribuída, é uma rede de computadores que abrange uma grande área geográfica, com freqüência um país ou continente. Difere, assim, das Rede pessoal (PAN), das Rede de área local (LAN) e da Rede de área metropolitana (MAN).
As WAN tornaram-se necessárias devido ao crescimento das empresas, onde as LAN não eram mais suficientes para atender a demanda de informações, pois era necessária uma forma de passar informação de uma empresa para outra de forma rápida e eficiente. Surgiram as WAN que conectam redes dentro de uma vasta área geográfica, permitindo comunicação de longa distância.
WMAN:
 É uma rede sem fio de maior alcance em relação a WLAN, isto é, cobre cidades inteiras ou grandes regiões metropolitanas e centros urbanos.
A wman é uma rede sem fio que tem um alcance de dezenas de quilômetro.
Podendo interligar por exemplo diversos escritórios regionais, ou diversos setores de um campos universitário, sem a necessidade de uma estrutura baseada em fibra óptica que elevaria o custo da rede.
WWAN:É uma rede sem fio de maior alcance em relação a WAN, isto é, pode cobrir diversos países atingindo milhares de quilômetros de distancia. Para que isso seja possível existe a necessidade de utilização de antenas potentes para retransmissão do sinal.
Um exemplo de WWAN se refere a rede de celulares que cobre as diversas regiões do globo. A distância alcançada é limitada apenas pela tecnologia de transmissão utilizada, uma vez que o nível do sinal vai depender dos equipamentos de transmissão e recepção.
Por cobrir grandes distancias ela é mais propensa a perdas de sinais por causa dos ruídos e condições climáticas